# Portal:Mathematics

## The Mathematics Portal

Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

## Selected article

 Problem II.8 in the Arithmetica by Diophantus, annotated with Fermat's comment, which became Fermat's Last TheoremImage credit:

Fermat's Last Theorem is one of the most famous theorems in the history of mathematics. It states that:

${\displaystyle a^{n}+b^{n}=c^{n}}$ has no solutions in non-zero integers ${\displaystyle a}$, ${\displaystyle b}$, and ${\displaystyle c}$ when ${\displaystyle n}$ is an integer greater than 2.

Despite how closely the problem is related to the Pythagorean theorem, which has infinite solutions and hundreds of proofs, Fermat's subtle variation is much more difficult to prove. Still, the problem itself is easily understood even by schoolchildren, making it all the more frustrating and generating perhaps more incorrect proofs than any other problem in the history of mathematics.

The 17th-century mathematician Pierre de Fermat wrote in 1637 in his copy of Bachet's translation of the famous Arithmetica of Diophantus: "I have a truly marvelous proof of this proposition which this margin is too narrow to contain." However, no correct proof was found for 357 years, until it was finally proven using very deep methods by Andrew Wiles in 1995 (after a failed attempt a year before).

## Selected image

This image illustrates a failed attempt to comb the "hair" on a ball flat, leaving a tuft sticking out at each pole. The hairy ball theorem of algebraic topology states that whenever one attempts to comb a hairy ball, there will always be at least one point on the ball at which a tuft of hair sticks out. More precisely, it states that there is no nonvanishing continuous tangent-vector field on an even-dimensional n‑sphere (an ordinary sphere in three-dimensional space is known as a "2-sphere"). This is not true of certain other three-dimensional shapes, such as a torus (doughnut shape) which can be combed flat. The theorem was first stated by Henri Poincaré in the late 19th century and proved in 1912 by L. E. J. Brouwer. If one idealizes the wind in the Earth's atmosphere as a tangent-vector field, then the hairy ball theorem implies that given any wind at all on the surface of the Earth, there must at all times be a cyclone somewhere. Note, however, that wind can move vertically in the atmosphere, so the idealized case is not meteorologically sound. (What is true is that for every "shell" of atmosphere around the Earth, there must be a point on the shell where the wind is not moving horizontally.) The theorem also has implications in computer modeling (including video game design), in which a common problem is to compute a non-zero 3-D vector that is orthogonal (i.e., perpendicular) to a given one; the hairy ball theorem implies that there is no single continuous function that accomplishes this task.

## Did you know…

Showing 7 items out of 75

## WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

Project pages

Essays

Subprojects

Related projects

## Index of mathematics articles

 ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

## In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews
News

Wikiquote
Quotations

Wikisource
Texts

Wikiversity
Learning resources

Wiktionary
Definitions

Wikidata
Database